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We theoretically study Langevin systems with a tilted periodic potential. It is known that the ratioQ of the
diffusion constantD to the differential mobilitymd is not equal to the temperature of the environment(mul-
tiplied by the Boltzmann constant), except in the linear response regime, where the fluctuation dissipation
theorem holds. In order to elucidate the physical meaning ofQ far from equilibrium, we analyze a modulated
system with a slowly varying potential. We derive a large scale description of the probability density for the
modulated system by use of a perturbation method. The expressions we obtain show thatQ plays the role of
the temperature in the large scale description of the system and thatQ can be determined directly in experi-
ments, without measurements of the diffusion constant and the differential mobility. Hence the relationD
=mdQ among the independent measurable quantitiesD, md, andQ can be interpreted as an extension of the
Einstein relation.
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I. INTRODUCTION

Technological development in both the manipulation and
observation of objects on a small scales has led to further
understanding of the behavior exhibited by mechanical sys-
tems of length scales,10−6 m, force scales,10−12 N, and
time scales,10−3 sec. One such system that has been stud-
ied consists of a small bead suspended in a fluid. Because of
their simplicity, such systems are particularly useful for
studying topics relevant to fundamental physics. Indeed, re-
cently, the fluctuation theorem[1] and the Jarzynski equality
[2], which were derived theoretically as relations universally
valid for nonequilibrium processes, have been verified ex-
perimentally through experiments on systems consisting of
small beads[3] and RNA molecules[4] employing optical
tweezers.

In studying nonequilibrium systems, we want to discover
the uniquely nonequilibrium behavior as well as to determine
what properties of equilibrium systems remain even far from
equilibrium. We believe that small systems are suited for
such studies because nonequilibrium effects become more
significant as the system size decreases. In particular, with
regard to nonequilibrium systems, we are interested in find-
ing relations between measurable quantities that may be use-
ful in the construction of a systematic theory of nonequilib-
rium statistical mechanics.

In the present paper, we study the motion of a small bead
suspended in a fluid of temperatureT. The bead is confined
to move in a single direction, say thex direction, and is
subjected to a periodic potentialUsxd of period ,. Such a
system can be realized experimentally as a scanning optical
trap system[6], for example. Further, a flow with constant
velocity can be used to apply a constant driving forcef to the
bead. In this way, it is possible to experimentally realize

nonequilibrium steady states(NESSs) for such a bead sys-
tem.

The quantity we investigate is the ratioQ of the diffusion
constantD to the differential mobilitymd for a bead in a
NESS. In the linear response regime, the ratioQ is identical
to the temperature of the environment(multiplied by the
Boltzmann constant). This relation is equivalent to one form
of the fluctuation dissipation theorem(FDT). However, be-
cause the FDT does not hold for a NESS far from equilib-
rium, Q is not identical to the temperature of the environ-
ment. Nevertheless, in the system considered there, we find
that Q plays the role of the temperature in the description of
the large scale behavior of the system and thatQ can be
determined experimentally in a direct manner, without the
need to measureD andmd. We obtain this result by employ-
ing a perturbation method to derive the large scale descrip-
tion of the probability density.

II. MODEL

We assume that the motion of the bead is described by the
one-dimensional Langevin equation

gẋ = −
] Usxd

] x
+ f + Î2gTjstd, s1d

wherejstd is a Gaussian white noise with zero mean and unit
dispersion. The Boltzmann constant is set to unity. We note
that there are many physical examples that are described by
this equation[6]. Here, we make two remarks on the form of
Eq. (1). First, inertial effects are considered to be negligible,
because a typical value of the relaxation time of the particle
velocity, which is estimated to be,10−9 sec [7], is much
shorter than the characteristic time scale of the phenomena
observed in the type of experiments we consider. Second,T
in Eq. (1) is assumed to be the temperature of the environ-
ment. Although the validity of this assumption is not known
for NESSs in general, our result does not depend on the
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physical interpretation ofT, because we do not need to use
the value ofT in our analysis.

The probability density for the position of the particle
psx,td in this system obeys the Fokker-Planck equation

] p

] t
=

1

g

]

] x
FS ] U

] x
− fDp + T

] p

] x
G . s2d

The steady state densitypssx; fd is obtained as[8]

pssx; fd =
1

Z
I−sxd s3d

with

I−sxd =E
0

,

dye−bUsxd+bUsy+xd−bfy, s4d

whereb=1/T andZ is a normalization factor by which

E
0

,

dxpssx; fd = ,. s5d

The steady state currentvssfd is derived as

vssfd =
T

g

1 − e−bf,

s1/,dE
0

,

dxI−sxd
. s6d

The exact expression for the diffusion constantDsfd has been
derived recently for the system under consideration[9]. By
using a different method(see Secs. IV and VI, we derive the
following form for Dsfd:

Dsfd =
T

g

s1/,dE
0

,

dxfI−sxdg2I+sxd

fs1/,dE
0

,

dxI−sxdg3

, s7d

where

I+sxd =E
0

,

dyebUsxd−bUsx−yd−bfy. s8d

Note that Eq.(7) is equivalent to the expression derived in
Ref. [9], which is obtained by simply exchangingI+ andI− in
Eq. (7).

In the inset of Fig. 1, we display an example ofDsfd for
the caseUsxd=U0 sin 2px/,. It can be seen that the diffu-
sion is enhanced aroundf, /T=2pU0/T. This effect was first
reported in Ref.[10] and was subsequently analyzed more
quantitatively[9].

III. QUESTION

In the linear response regime, the mobilitym, defined as
m=lim f→0vssfd / f, is equal toDsf =0dT. This is one form of
the FDT. However, for a NESS far from equilibrium, the
FDT does not hold. In fact, far from equilibrium, there does
not even exist a FDT involving the differential mobilitymd
;dvs/df, drived from Eq.(6) as follows:

mdsfd =
1

g

s1/,dE
0

,

dxI−sxdI+sxd

fs1/,dE
0

,

dxI−sxdg2

. s9d

In order to determine quantitatively the extent to which
the FDT is violated, we defineQ as the ratio ofD to md:

Qsfd ;
Dsfd
mdsfd

. s10d

As displayed in Fig. 1, although the dimensionless quantity
Q /T is unity in equilibrium, it depends onf, /T and on the
form of the periodic potentialUsxd when the system is far
from equilibrium. In addition to the fact that the FDT does
not hold far from equilibrium, no means of measuringQ
experimentally without measuringD and md has been pro-
posed. Hence, there is no known method of deducingmd
from experimentally measured values ofD. While the fluc-
tuation theorem reported in Ref.[1], which is valid for a
NESS far from equilibrium, can be regarded as an extension
of FDT [11], it seems difficult to connect it to a physical
interpretation of Eq.(10).

Despite the apparent difficulties described above, we at-
tempt to propose a method of measuringQ experimentally
without measuringD andmd. We first note thatQ /T (Þ1 in
a NESS) is interpreted as the FDT violation factor. Recently,
stimulated by a proposal for the thermodynamic measure-
ment of the FDT violation factor in spin glass systems as the
“effective temperature”[12], the feasibility of physical mea-
surements of the effective temperature has been investigated
in numerical experiments modeling a sheared glassy material
[13], a driving system near jamming[14], and driven vortex
lattices [15]. Among these, Berthier and Barrat proposed a
measurement method of the FDT violation factor as the ef-
fective temperature in sheared glassy systems[13]. They
used a tracer particle of large mass as an effective thermom-
eter and demonstrated that the kinetic energy of the tracer is
related to the FDT violation factor. This result exhibits a

FIG. 1. Q /T as a function of f, /T in the case thatUsxd
=U0 sin 2px/, with U0/T=3.0. Q /T=1 at f =0 andQ /T.1 for
f .0. The inset displaysDg /T as a function off, /T calculated
using Eq.(7).
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clear relation between the FDT violation factor and the mea-
surable effective temperature.

Here too we seek to determine whether there is a realm in
which Q can be interpreted as the effective temperature in a
NESS and, hence, whether it can be measured independently
of D andmd.

IV. RESULTS

We propose a method of measuringQ by adding a slowly
varying potential which plays the role of an effective ther-
mometer to the system under consideration. In order to dem-
onstrate this method, we study Eq.(1) with Usxd replaced by
a potentialUsxd+Vsxd, whereVsxd is a slowly varying peri-
odic potentialVsxd of period L@,. We investigate the be-
havior of the probability density on length scales larger than
L. In order to make the separation of scales explicit, we
define«;, /L and the large scaled coordinateX;«x. The
probability density in this system obeys the Fokker-Planck
equation

] p

] t
=

1

g

]

] x
FS ] U

] x
+ «

] Ṽ

] X
− fDp + T

] p

] x
G , s11d

where we have definedṼsXd;Vsxd.
We extract the large scale behavior ofpsx,td by introduc-

ing a slowly varying fieldQsX,td as

psx,td = pssx; fmdSQ + «asx; fmd
] Q

] X
+ «2bsx; fmd

]2Q

] X2

+ «csx; fmd
] fm

] X
Q + Os«3dD , s12d

where fm= f −«] Ṽ/]X. Becausefm is a function ofX=«x,
the x dependence ofpssx; fmd appears in two ways, as an
explicit dependence and as a dependence throughfm. Note
that pssx; fmd is a periodic function in the sense thatpssx
+, ; fmd=pssx; fmd. The functions asx; fmd, bsx; fmd, and
csx; fmd are similar; that is, they are periodic functions ofx in
the same sense and depend onfm. Their functional forms are
determined below.

Substituting Eq.(12) into Eq. (11), we obtain

] Q

] t
= «A] Q

] X
+ «2B ]2Q

] X2 + «C] fm

] X
Q + Os«3d, s13d

whereA, B, andC can be expressed by

A = − Svs −
T

g
ps8Dps

−1s1 + a8d +
T

g
a88, s14d

B = − Svs −
T

g
ps8Dps

−1sa + b8d +
T

g
s1 + 2a8 + b88d − aA,

s15d

C = − Svs −
T

g
ps8Dps

−1c8 +
T

g
c88 −

dvs

dfm
ps

−1 +
T

g

] ps8

] fm
ps

−1,

s16d

where the prime represents the partial derivative with respect
to x, that is,a8sx; fmd=]asx; fmd /]x and so on. Then we can
choosea, b, andc so thatA, B, andC do not depend onx
explicitly but depend onx through theX dependence offm.
After a straightforward calculation, we find that, subject to
this condition,A, B, andC are uniquely determined as

A = − vssfmd, s17d

B = Dsfmd, s18d

C = −
dvssfmd

dfm
. s19d

(The derivation will be presented in Sec. VI) Using this re-
sult, we rewrite Eq.(13) as

] Q

] t
= «

]

] X
F− vssfmdQ + Dsfmd«

] Q

] X
+ Os«2dG . s20d

Recalling thatfm= f −«] Ṽ/]X, we see that this equation is
equivalent to the Fokker-Planck equation

] Q

] t
=

1

G
«

]

] X
FS«

] Ṽ

] X
− FDQ + Q«

] Q

] X
+ Os«2dG , s21d

where we have defined

Gsfd ; mdsfd−1, s22d

Fsfd ; vssfdmdsfd−1. s23d

For reference, in Fig. 2, we present graphs ofG andF as a
function of f for the model considered in Fig. 1.

We note that Eq.(21) has the same form as Eq.(2), with
the parametersG, F, and Q corresponding tog, f, and T,
respectively. Thus, replacing(g , f ,T,Usxd) in Eq. (6) by

FIG. 2. The left axis representsG /g, which is displayed as a
function of f, /T (solid curve), and the right axis representsF, /T,
also displayed as a function off, /T (dash-dotted curve), in the case
that Usxd=U0 sin 2px/,, with U0/T=3.0. The dotted line corre-
sponds toF= f.
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(G ,F ,Q ,ṼsXd), we obtain the current for a NESS of this
modulated system. From this result, by measuring the steady
state current for several forms ofVsxd, we can determine the
values ofG, F, and Q experimentally, where we note that
these values do not depend on the choice ofVsxd. This fact
implies the existence of the relationD=mdQ among the in-
dependent measurable quantitiesD, md, andQ in a NESS far
from equilibrium. This relationD=mdQ can be thought of as
an extended Einstein relation. Furthermore, from the corre-
spondence betweenQ in Eq. (21) and T in Eq. (2), it is
evident thatQ plays the role of the temperature for the large
scale behavior of the system. In this way, we have arrived at
the main claim of this paper, the physical interpretation ofQ.

Here we address two remarks on the main claim. First,
one may naively expect that on the large scale Eq.(1) can be
effectively described by

ẋ = vssfd + Î2Dsfdjstd. s24d

Although such an effective description is valid, we empha-
size that the effective temperature is not determined from
this description. In order to have the correspondence with
Eq. (21), we need one more quantity in addition toD andvs.
In our analysis, by adding the slowly varying potential to the
system,G, F, and Q are determined. We thus interpret the
slowly varying potential as an effective thermometer for the
original system described by Eq.(1).

Second, we have another method of measuringQ by con-

sidering the case in which a slowly varying potentialṼ(«sx
−vstd) that moves with constant velocityvs replacesṼs«xd in
Eq. (11). Although the resulting system is more complicated
than that considered above, the large scale behavior in this
case is actually simpler. Indeed, using the same method as
above, we obtain the following equation forQsY,td describ-
ing the large scale behavior of the system:

] QsY,td
] t

=
1

G
«

]

] Y
S«

] ṼsYd
] Y

Q + Q«
] Q

] Y
+ Os«2dD .

s25d

Here, we have introduced the large scaled moving coordinate
Y;«sx−vstd. This equation is identical to the Fokker-Planck
equation describing the time evolution of the probability
density in an equilibrium state with temperatureQ. There-
fore, for example,Q is obtained by measuring the statistical

average ofṼsYd.

V. NUMERICAL EXPERIMENT

Let us demonstrate that the measurement method ofQ by
use of a slowly varying potential works well in numerical
experiments. We study Eq.(1) numerically with periodic
boundary conditions for the case thatUsxd=U0 sin 2px/,
and that the system size isL. The parameter values are cho-
sen as follows:L /,=50, U0/T=3, andf, /T=16.

We measure the effective temperature for this system by
using a moving potentialVsyd in the form

Vsyd = H2Dy/L for 0 ø y ø L/2,

2D − 2Dy/L for L/2 ø y ø L,
s26d

with y=modsx−vst ,Ld. The statistical averages ofV in a
NESS, kVl, are measured for several values ofD. As dis-
played in Fig. 3, the graphsD ,kVld is fitted well by the form

kVl = Q −
D

expsD/Qd − 1
, s27d

which might be expected from Eq.(25). Using this fitting for
the experimental result, we evaluate the value ofQ /T as
Q /T=1.67s4d. This value should be compared with the the-
oretical one, 1.677, which is calculated from Eq.(10). Thus
we conclude that our measurement method forQ works well
in experiments.

VI. TECHNICAL DETAILS

We regard Eq.(14) as an ordinary differential equation
(ODE) for asx; fmd under the condition thatA does not de-
pend onx. This ODE has periodic solutions forx only when
A satisfies a certain condition, which providesA uniquely.

Let us solve the ODE(14). We first define

dsx; fmd = a8sx; fmdpssx; fmd. s28d

Then Eq.(14) becomes

T

g
d8 − vsa8 − vs +

T

g
ps8 − Aps = 0. s29d

Integrating this equation over the rangef0,,g, we obtain

A = − vs, s30d

where we have used a requirement thatTd/g−vsa is a peri-
odic function.

Under the condition(30), we can derive periodic solutions
asx; fmd. The integration of Eq.(29) leads to

FIG. 3. kVl /T versusD /T obtained in the numerical experiment.
The dotted line represents a fitting curve of the form(27) in which
Q /T=1.67s4d.
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T

g
a8ps − vsa − vsx +

T

g
ps + vsH + vsK1 = 0, s31d

whereK1 is a constant and we have defined

Hsx; fmd =E
0

x

dypssy; fmd. s32d

Substituting the expression

asx; fmd = Hsx; fmd − x + āsx; fmd s33d

into Eq. (31), we rewrite Eq.(31) as

T

g
psā8 − vsā +

T

g
ps

2 + vsK1 = 0. s34d

Noting the relation

vsspse
bfUsxd−fmxgd = −

T

g
psspse

bfUsxd−fmxgd8, s35d

we solve Eq.(34) as

āsx; fmd = − pssx; fmd−1e−bfUsxd−fmxgFsx; fmd

+ K2pssx; fmd−1e−bfUsxd−fmxg + K1, s36d

where we have defined

Fsx; fmd =E
0

x

dypssy; fmd2ebfUsy;fmd−fmyg. s37d

From the conditionas0; fmd=as, ; fmd, the constantK2 is de-
termined as

K2 =
1

1 − e−bfm,Fs,; fmd. s38d

Equations(33) and (36)–(38) provide all periodic solutions
of the ODE(14).

Next we study Eq.(15) by repeating a similar analysis.
Defining

hsx; fmd = b8sx; fmdpssx; fmd, s39d

we rewrite Eq.(15) as

T

g
h8 − vsb8 − vsa +

T

g
s1 + 2a8dps +

T

g
aps8 − Bps + avsps = 0.

s40d

Integrating this equation over the rangef0,,g, we obtain

B =
T

g
+

T

g,
E

0

,

dxa8ps −
vs

,
E

0

,

dxas1 − psd, s41d

where we have used the requirement thatTh/g−vsb is a
periodic function ofx. We can derive the expression forB by
substitutingasx; fmd into Eq. (41). However, this expression
is very complicated. We now simplify this.

Eliminating a8 in Eq. (41) by use of Eqs.(33) and (34),
we obtain

B =
vs

,
E

0

,

dxsx − Hd +
vs

,
E

0

,

dxpsa − vsK1. s42d

We can simplify this equation as

B =
vs

,
E

0

,

dxpsā − vsK1, s43d

where we have used the equality

E
0

,

dxsx − Hds1 − psd = 0. s44d

Substituting Eq.(36) into Eq. (43), we obtain

B =
vs

,s1 − e−bfm,d
E

0

,

dx e−bfUsxd−fmxgfFs,; fmd − s1

− e−bfm,dFsx; fmdg. s45d

Here we have an identity for an arbitrary periodic function
fsxd with the period,:

E
0

,

dyfsyde−bfmy − s1 − e−bfm,dE
0

x

dyfsyde−bfmy

= e−bfmxE
0

,

dyfsy + xde−bfmy. s46d

Puttingf=ps
2ebU in Eq. (46), we simplify Eq.(45) as

B =
vs

s1 − e−bfm,d,
E

0

,

dxe−bUsxd 3 E
0

,

dyfpssy

+ x; fmdg2ebUsy+xd−bfmy. s47d

Using Eqs.(3) and (6), we can derive

B = Dsfmd s48d

with Eq. (7).
Finally, defining

gsx; fmd = c8sx; fmdpssx; fmd, s49d

we rewrite Eq.(16) as

T

g
g8 − vsc8 −

dvs

dfm
+

T

g

] ps8

] fm
− psC = 0. s50d

Integrating this equation over the regionf0,,g, we obtain

C = −
dvs

dfm
, s51d

where we have used the requirement thatTg/g−vsc is a
periodic function ofx.

VII. DISCUSSION

In conclusion, we have proposed a method of measuring
the effective temperature of the Langevin system(1) by us-
ing a slowly varying potential and have found that this ef-
fective temperature is equal toQ defined by Eq.(10). The
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independence of measurements of the quantitiesD, md, and
Q makes us interpretD=mdQ as the extended Einstein rela-
tion of the Langevin equation. This significant result was
obtained by analyzing the Fokker-Planck equation with a
slowly varying potential.

At the end of this paper, we shall present remarks on Eq.
(25), which is derived by analysis of the system with a mov-
ing potential. Equation(25) provides two important insights
in addition to the direct measurement method ofQ.

The first insight obtained from Eq.(25) is related to the
interpretation of the extended Einstein relationD=mdQ
among independent measurable quantities. Because Eq.(25)
is identical in form to equations that describe equilibrium
systems,D=Q /G (the Einstein relation in the linear response
theory) should hold. From Eq.(22), this Einstein relation
yields D=mdQ. As is well known, the Einstein relation is
closely connected to the existence of detailed balance for
fluctuations. However, note that fluctuations described by
Eq. (1) with f Þ0 do not satisfy the detailed balance condi-
tion, as can easily be checked by using the steady state den-
sity (3). Therefore, we find that the detailed balance condi-
tion is recovered through the coarse-graining procedure
yielding Eq. (25) and that Eq.(10) can be understood as a
result of the recovery of detailed balance with respect to the
canonical distribution for the temperatureQ.

The second insight obtained from Eq.(25) is related to the
extension of thermodynamics to a NESS. When we assume

that ṼsYd takes a tanh-like form with amplitudeD [that is,

Ṽs`d−Ṽs−`d=D], we have

Q+ − Q−

Q−
= −

D

Q
+ OXSD

Q
D2C s52d

with Q± ; limY→±`QsYd. Then, the chemical potential ex-
tended to NESSs can be defined using Eq.(52) in a similar
way as in the case of a driven lattice gas[16]. Therefore, it
may be possible to incorporate the idea of the effective tem-
perature into a theoretical framework of thermodynamic
functions extended to NESSs. A study with this aim treating
a wide class of nonequilibrium systems, including many-
body systems, is now in progress.
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