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Effective temperature in nonequilibrium steady states of Langevin systems with a tilted
periodic potential
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We theoretically study Langevin systems with a tilted periodic potential. It is known that theBraifadhe
diffusion constanD to the differential mobilityxy is not equal to the temperature of the environm@mtl-
tiplied by the Boltzmann constantexcept in the linear response regime, where the fluctuation dissipation
theorem holds. In order to elucidate the physical meanin@ &dr from equilibrium, we analyze a modulated
system with a slowly varying potential. We derive a large scale description of the probability density for the
modulated system by use of a perturbation method. The expressions we obtain sh@wptags the role of
the temperature in the large scale description of the system an@thah be determined directly in experi-
ments, without measurements of the diffusion constant and the differential mobility. Hence the rBlation
=uq® among the independent measurable quantiliegy, and® can be interpreted as an extension of the
Einstein relation.
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I. INTRODUCTION nonequilibrium steady stata®dlESS$ for such a bead sys-

Technological development in both the manipulation anotem' : . . . e
observation of objects on a small scales has led to further The quantity we investigate is the rafibof the diffusion

understanding of the behavior exhibited by mechanical sys(—:onStantD to the differential mobility 4 for a bead in a

6 12 NESS. In the linear response regime, the ré@ids identical
tems of length scales10°* m, force scales-10""N, and to the temperature of the environmegmultiplied by the

time scales~10"2 sec. One such system that has been stud it taint This relation valent t ¢
ied consists of a small bead suspended in a fluid. Because Zmann cons am_ IS refation Is equivaient to one form
of the fluctuation dissipation theore(®DT). However, be-

their simplicity, such systems are particularly useful for .
studying topics relevant to fundamental physics. Indeed, re2ause the FDT does not hold for a NESS far from equilib-

cently, the fluctuation theorefd] and the Jarzynski equality rlumi ®N IS n(t)rt1 |?jent|c_al tLO the ttemperatgdre O:; ttr;]e enwror}:_— d
[2], which were derived theoretically as relations universallymen - Neveriheless, I the system considered there, we fin

valid for nonequilibrium processes, have been verified ex—thatl® plays tr|1e Ldﬁ of the tfetmhperatlf[re n th; %estcrlptéon of
perimentally through experiments on systems consisting the arge scaie behavior ol the system an atan be

small beadg3] and RNA molecule§4] employing optical determined experimentally in a d_lrect_ manner, without the
tweezers. need to measur® and uy. We obtain this result by employ-

In studying nonequilibrium systems, we want to discovering a perturbation method to derive the large scale descrip-

the uniquely nonequilibrium behavior as well as to determind'©" of the probability density.
what properties of equilibrium systems remain even far from
equilibrium. We believe that small systems are suited for Il. MODEL
such studies because nonequilibrium effects become more
significant as the system size decreases. In particular, with We assume that the motion of the bead is described by the
regard to nonequilibrium systems, we are interested in findone-dimensional Langevin equation
ing relations between measurable quantities that may be use- JU(X) o
ful in the construction of a systematic theory of nonequilib- yX=———+f+ \s’zyTg(t), (1)
rium statistical mechanics. X
In the present paper, we study the motion of a small bea%hereg(t)

. X . i is a Gaussian white noise with zero mean and unit
suspended in a fluid of temperatufe The bead is confined

. . L S ~~ dispersion. The Boltzmann constant is set to unity. We note
to move in a smg!e dlrectlon,' say thedlrgctlon, and is that there are many physical examples that are described by
subjected to a periodic potential(x) of period €. Such @ s equatior6]. Here, we make two remarks on the form of
system can be realized experimentally as a scanning opticgly (1. First, inertial effects are considered to be negligible,
trap system(6], for example. Further, a flow with constant pecqase a typical value of the relaxation time of the particle
velocity can_be used_ to_ applyf_:lconstant drlylng forte the_ velocity, which is estimated to be-10° sec[7], is much
bead. In this way, it is possible to experimentally realizegprter than the characteristic time scale of the phenomena
observed in the type of experiments we consider. Secbnd,
in EQ. (1) is assumed to be the temperature of the environ-
*Electronic address: hayashi@jiro.c.u-tokyo.ac.jp ment. Although the validity of this assumption is not known
"Electronic address: sasa@jiro.c.u-tokyo.ac.jp for NESSs in general, our result does not depend on the
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physical interpretation of, because we do not need to use

the value ofT in our analysis.

The probability density for the position of the particle

p(x,t) in this system obeys the Fokker-Planck equation
J 14 JuU J
—p:——[<——f>p+T—p} @)
gt yax|[\ ax RS

The steady state densipg(x;f) is obtained a$8]

1
ps(x; ) = E"(X) )
with
¢
I_(x) = f dye-BU(X)*'BU(WX)'ny' (4)
0
where8=1/T andZ is a normalization factor by which
¢
f dxpy(x;f)=¢. (5)
0
The steady state currenf(f) is derived as

T 1-¢hit
vf)=—————

: . (6)
Y(110) f dx1_(x)
0

The exact expression for the diffusion constaiit) has been

derived recently for the system under considerafi@n By

using a different metho¢see Secs. IV and VI, we derive the

following form for D(f):

¢
(176) f , 10011 4(x)

D(f)=— : )

4
1/¢ dxl_(x)]®
[(1/6) L x1_(x)]
where

€
I+(X) = f dyé;u(x)_BU(X_Y)_:ny. (8)
0
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FIG. 1. ®/T as a function off¢/T in the case thaiJ(x)
=Ug sin 2mx/€ with Up/T=3.0.®/T=1 atf=0 and®/T>1 for
f>0. The inset display®y/T as a function off¢/T calculated
using Eq.(7).

¢
(1/€)J dx1_(x)1.(x)

0

mq(f) =— 9)

- .
Y e f dxl_(x) 2
0

In order to determine quantitatively the extent to which
the FDT is violated, we defin® as the ratio oD to ug:

D(f)

f)= .
o) ()

(10

As displayed in Fig. 1, although the dimensionless quantity
®/T is unity in equilibrium, it depends ofi/T and on the
form of the periodic potentialU(x) when the system is far
from equilibrium. In addition to the fact that the FDT does
not hold far from equilibrium, no means of measurifig
experimentally without measurinD and x4 has been pro-
posed. Hence, there is no known method of dedugifg
from experimentally measured values f While the fluc-
tuation theorem reported in Refl], which is valid for a
NESS far from equilibrium, can be regarded as an extension
of FDT [11], it seems difficult to connect it to a physical

Note that Eq.7) is equivalent to the expression derived in interpretation of Eq(10).

Ref.[9], which is obtained by simply exchangihgandl_in

Eq. (7).
In the inset of Fig. 1, we display an example[ff) for

Despite the apparent difficulties described above, we at-
tempt to propose a method of measurifgexperimentally
without measurind® and uy. We first note that) /T (#1 in

the caseU(x)=U, sin 2mx/€. It can be seen that the diffu- a NESS is interpreted as the FDT violation factor. Recently,

sion is enhanced arourfd/ T=27U,/T. This effect was first

stimulated by a proposal for the thermodynamic measure-

reported in Ref[10] and was subsequently analyzed morement of the FDT violation factor in spin glass systems as the

quantitatively[9].

IIl. QUESTION

“effective temperature(12], the feasibility of physical mea-
surements of the effective temperature has been investigated
in numerical experiments modeling a sheared glassy material
[13], a driving system near jammir{d4], and driven vortex

In the linear response regime, the mobiliy defined as lattices[15]. Among these, Berthier and Barrat proposed a
w=lime_y(f)/f, is equal toD(f=0)T. This is one form of measurement method of the FDT violation factor as the ef-
the FDT. However, for a NESS far from equilibrium, the fective temperature in sheared glassy systé¢t®. They
FDT does not hold. In fact, far from equilibrium, there doesused a tracer particle of large mass as an effective thermom-

not even exist a FDT involving the differential mobilijyy
=dv/df, drived from Eq.(6) as follows:

eter and demonstrated that the kinetic energy of the tracer is
related to the FDT violation factor. This result exhibits a

066119-2



EFFECTIVE TEMPERATURE IN NONEQUILIBRIUM.. PHYSICAL REVIEW E 69, 066119(2004)

clear relation between the FDT violation factor and the mea- 30 . . . — 30
surable effective temperature.

Here too we seek to determine whether there is a realm in
which © can be interpreted as the effective temperature in a
NESS and, hence, whether it can be measured independently
of D and ug.

&

T/
Fir

IV. RESULTS

We propose a method of measuri@gby adding a slowly
varying potential which plays the role of an effective ther- T
mometer to the system under consideration. In order to dem- _ S
onstrate this method, we study Ed) with U(x) replaced by FIQ. 2. The left axis represenE/y,_whlch_ls displayed as a
a potentialU(x)+V(x), whereV(x) is a slowly varying peri- functhn of f¢/T (solid curve, and the right axis reprgserﬁ/T,

. . . . . also displayed as a function &€/ T (dash-dotted curyein the case
odic potentialV(x) of period L>¢. We investigate the be- _ . . - :
havi f th bability densi | h les | h that U(x)=Ug sin 2@x/¢, with Uy/T=3.0. The dotted line corre-
avior of the probability density on length scales larger t yonds toF =f.
L. In order to make the separation of scales explicit, we
definee={/L and the large scaled coordinaXe=ex. The )
probability density in this system obeys the Fokker-Planck C=- (Us_ Ipé) pglc/ + IC,, _ o -1, TIps 4

Y

equation dfmpS A
~ (16)
ap 10 JuU A ap . . S .
—=——|\—te——--f|lp+tT— |, (11)  where the prime represents the partial derivative with respect
It yax[\dx dX JIX to x, that is,a’ (x; f,) =da(x; f,,)/ x and so on. Then we can
o~ choosea, b, andc so that.A, B, andC do not depend ox
where we have defined(X)=V(x). _ explicitly but depend onx through theX dependence of;,,
~ We extract the large scale behaviorpik,t) by introduc-  After a straightforward calculation, we find that, subject to
ing a slowly varying fieldQ(X,t) as this condition,A, B, andC are uniquely determined as
aQ (92Q A: _Us(fm), (17)
p(X,t) = ps(X; fm)(Q +ea(X; fm)ﬁ +&%0(x; fm)m
. B=D(fy), (18)
J
+ec(X; fn) o Q+ O(s"’)) , (12)
X oo Qi) 19
T dfy

wherefmzf—eﬁ//ax. Becausef,, is a function ofX=gx,
the x dependence opg(x;f,) appears in two ways, as an (The derivation will be presented in Sec.)Wsing this re-
explicit dependence and as a dependence thrdygiNote  sult, we rewrite Eq(13) as
that p(x;f,,) is a periodic function in the sense thad(x 20 p
+¢;f)=p«X;fn). The functions a(x;f,,), b(x;f.,), and =g
c(x; f.,) are similar; that is, they are periodic functionsxdf gt IX
the same sense and dependfgnTheir functional forms are
determined below.

Substituting Eq(12) into Eqg.(11), we obtain

{— vs(fm)Q + D(fm)*‘;% + 0(82)} - (20

Recalling thatfm:f—saV/aX, we see that this equation is
equivalent to the Fokker-Planck equation

9Q 1 4 oV 9Q

aQ iQ  , &Q afn 5 —=—s—l<s——F>Q+s +0(82)], (21)
—_—= — — — 1

ot SeASL e Bosa el Q4 0, (13) gt T X[\ dX IX

where we have defined

where A, B, andC can be expressed by r'() (f)? 22)
= M4 ,

A

T ' -1 ' T r
T\vsTpsJps (L FA)+ ZaT, (14) F(f) = vg(Hug(f) L. (23)

For reference, in Fig. 2, we present graphd’odndF as a
T T function of f for the model considered in Fig. 1.
B=- (vs— —pg)pgl(a+ b')+—(1+2a"+b'")-aA, We note that Eq(21) has the same form as E@), with
Y Y the parameter§’, F, and ® corresponding toy, f, and T,
(15 respectively. Thus, replacingy,f,T,U(x)) in Eq. (6) by
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(I',F,0,V(X)), we obtain the current for a NESS of this 2
modulated system. From this result, by measuring the steady ]
state current for several forms 9fx), we can determine the e X XX
values ofI", F, and ® experimentally, where we note that Lsr xx
these values do not depend on the choic&'©). This fact . X
implies the existence of the relatidh=pu4 0 among the in-
dependent measurable quantitizsuy, and® in a NESS far
from equilibrium. This relatiod =u4® can be thought of as
an extended Einstein relation. Furthermore, from the corre-
spondence betwee® in Eqg. (21) and T in Eq. (2), it is
evident that® plays the role of the temperature for the large
scale behavior of the system. In this way, we have arrived at S , , , , ,
the main claim of this paper, the physical interpretatio®of 0 5 10
Here we address two remarks on the main claim. First, AT
one may naively expect that on the large scale(Egcan be
effectively described by

<V>/T
I

05 | )(

FIG. 3. (V)/T versusA/T obtained in the numerical experiment.
The dotted line represents a fitting curve of the fq&w) in which

: [y 0/T=1.674).
k=uy(f) + \2D(N&(). (24) “
Although such an effective description is valid, we empha- _J2Ay/L for Os<ys<L/2,
size that the effective temperature is not determined from Vi) = 20 -2Ay/L for L/i2<y<L, (26)

this description. In order to have the correspondence with
Eqg. (21), we need one more quantity in addition@oandvs.  with y=modx-uv,L). The statistical averages &f in a
In our analysis, by adding the slowly varying potential to theNESS, (V), are measured for several values &f As dis-
system,I', F, and ©® are determined. We thus interpret the played in Fig. 3, the grapf\,(V)) is fitted well by the form
slowly varying potential as an effective thermometer for the
original system described by E¢f). A

Second, we have another method of measuéirtgy con- V)=6- expA/0) -1 (27)

sidering the case in which a slowly varying potenﬁab(x

-v4)) that moves with constant velocity replacegl(sx) in

Eq. (11). Although the resulting system is more complicate ~ . i
than that considered above, the large scale behavior in thl@/T'l'GM')' This value should be compared with the the-

case is actually simpler. Indeed, using the same method &¥étical one, 1.677, which is calculated from E0). Thus
above, we obtain the following equation feXY,t) describ- W€ conclude that our measurement methoddowrorks well

ing the large scale behavior of the system: In experiments.

which might be expected from E(5). Using this fitting for
dthe experimental result, we evaluate the value®dfT as

VI. TECHNICAL DETAILS

+0
gt I ay Q

IV 1 i( aV(Y) 9Q
) Y “av

+ O(sz)> . . . . .
We regard Eq(14) as an ordinary differential equation

(25)  (ODE) for a(x; fy) under the condition that does not de-
pend onx. This ODE has periodic solutions faronly when

Here, we have introduced the large scaled moving coordinatél satisfies a certain condition, which providdsuniquely.

Y=e(x-v4d). This equation is identical to the Fokker-Planck Let us solve the ODK14). We first define

equation describing the time evolution of the probability

density in an equilibrium state with temperatude There- d(x; fm) = a" (% Fr)Ps(X; ) - (28

fore, for example® is obtained by measuring the statistical T

Y hen Eq.(14
average ofV/(Y). en Eq.(14) becomes

T ’ ’ T ’ —
V. NUMERICAL EXPERIMENT ;d “Uv@ ~Uust 7,Ios Aps=0. (29

Let us demonstrate that the measurement meth& oy |ntegrating this equation over the rand® ¢], we obtain
use of a slowly varying potential works well in numerical

experiments. We study Eql) numerically with periodic A=-uvq, (30)
boundary conditions for the case thdfx)=U, sin 2@x/€
and that the system size lis The parameter values are cho- where we have used a requirement thet y—vsa is a peri-

sen as followsL/¢=50,U,/T=3, andf{/T=16. odic function.
We measure the effective temperature for this system by Under the conditiori30), we can derive periodic solutions
using a moving potentia¥/(y) in the form a(x; f,). The integration of Eq(29) leads to
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T T
—a'ps—va@a—-vX+—pstuvH+uvK; =0, (31
Y Y
whereK; is a constant and we have defined
X
H(X; frm) =f dyp(y; fm)- (32
0
Substituting the expression
alx;f) =HXx;f) - x+ax;f,) (33
into Eq.(31), we rewrite Eq(31) as
T . _ T,
—pa’ —va+ —ps+ovK;=0. (34
Y Y
Noting the relation
- T Xy
vg(peAV ) Imd) = - ;ps(pseﬁ[“(x’ ), (35)
we solve Eq(34) as
alx; fp) = = py; fr) e AV Xl (x; £ )
+ Kopy(X; ) e VT 4 K (36)
where we have defined
X
D(X; fry) = f dypy(y: frp) €00 nd - (37)
0

From the conditiora(0;f,,)=a({; f,,), the constanK, is de-
termined as

K2: ((D(g,fm)

1-¢Pfm (8

Equations(33) and (36)—«38) provide all periodic solutions
of the ODE(14).

Next we study Eq(15) by repeating a similar analysis.
Defining

h(x; fr) =b"(X; fr)ps(X; fr)

we rewrite Eq.(15) as

(39

T T T
—h" -vd’ —va+—(1+2a")ps+—ap, - Bps+avsps=0.
Y Y Y

(40)
Integrating this equation over the ranfe ¢], we obtain

T T (¢
B=—+—

14
dxa’ps—v—sf dxal-py), (41
y vtJo € Jo

where we have used the requirement that y—vb is a
periodic function ofx. We can derive the expression f6rby
substitutinga(x; f,,,) into Eq. (41). However, this expression
is very complicated. We now simplify this.

Eliminatinga’ in Eq. (41) by use of Eqs(33) and (34),
we obtain

PHYSICAL REVIEW E 69, 066119(2004)

v ¢ v ¢
B:—Sf dx(x—H)+—sf dxpa-vK;. (42
tJo ¢ Jo

We can simplify this equation as

B= vf Jj dxpa- vKy, (43)
where we have used the equality
J: dx(x=H)(1-pg) =0. (44)
Substituting Eq(36) into Eq.(43), we obtain
B= m : dx eV (¢ F) - (1
- e Pm)D(x; fi)]. (45)

Here we have an identity for an arbitrary periodic function
¢(x) with the period¢:

4 X
f dye(y)e P — (1 — g Plnf) f dye(y)e Pl
0 0

=g Pl J o€ dy(y + x)eFimy, (46)
Putting ¢p=p2e?V in Eq. (46), we simplify Eq.(45) as
B=—25 Je dxePYX x f dylps(y
(1-ePme ), 0 °
+X; f ) J2€PO 0BTy (47
Using Eqgs.(3) and(6), we can derive
B=D(f,) (48
with Eq. (7).
Finally, defining
9(X; fm) = € (X; Fr) Ps(X; ), (49)
we rewrite Eq.(16) as
gg’—vsc’—jTt+£j—E—psc=O. (50
Integrating this equation over the regipd, €], we obtain
C=- g—;: (51

where we have used the requirement thatf y—vC is a
periodic function ofx.

VIl. DISCUSSION

In conclusion, we have proposed a method of measuring
the effective temperature of the Langevin syst@mby us-
ing a slowly varying potential and have found that this ef-
fective temperature is equal ©® defined by Eq(10). The
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independence of measurements of the quantidiegy, and The second insight obtained from Eg&5) is related to the
makes us interprdd=pu4® as the extended Einstein rela- extension of thermodynamics to a NESS. When we assume
tion of the Langevin equation. This significant result WaSthat V(Y) takes a tanh-like form with amplituda [that is,
obtained by analyzing the Fokker-Planck equation with a- ~
slowly varying potential. V() =V(-»)=A], we have

At the end of this paper, we shall present remarks on Eq. Q,-Q A A\2
(25), which is derived by analysis of the system with a mov- = =<~ _-__ 4 O((—) ) (52
?ng pof[e_ntial. Equa_tiom25) provides two important insights Q- 0 0
in addition to the direct measurement method3of with Q,=limy_,..Q(Y). Then, the chemical potential ex-

The first insight obtained from E@25) is related to the
interpretation of the extended Einstein relati®=u 0
among independent measurable quantities. Becaus@5q.
is identical in form to equations that describe equilibrium
systemsP=0/T" (the Einstein relation in the linear response

tended to NESSs can be defined using &&) in a similar
way as in the case of a driven lattice dd$]. Therefore, it
may be possible to incorporate the idea of the effective tem-
perature into a theoretical framework of thermodynamic

theory) should hold. From Eq(22), this Einstein relation functions extended to NESSs. A study with this aim treating
a wide class of nonequilibrium systems, including many-

yields D=pu40. As is well known, the Einstein relation is bodv SYStems. iS NOW in Droaress
closely connected to the existence of detailed balance for y sy ' prog '
fluctuations. However, note that fluctuations described by

Eq. (1) with f;&Q do not satisfy the d_eta|led balance condi- ACKNOWLEDGMENTS

tion, as can easily be checked by using the steady state den-

sity (3). Therefore, we find that the detailed balance condi- The authors acknowledge T. Harada for stimulating dis-
tion is recovered through the coarse-graining procedureussions on the NESS of a small bead and for a detailed
yielding Eq.(25) and that Eq(10) can be understood as a explanation of experiments on such systems. This work was
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